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The main result of the present work is the proof  that among acyclic polyenes 
C,H,  + 2, the linear isomer H2C=(CH),_ 2=CH2 has maximal HMO K-electron 
energy. The 1,1-divinyl isomer (H2C--CH)2C(CH),_6=CH 2 has maximal ~- 
energy among branched acyclic systems. Among trees with n vertices, the star 
has minimal energy. A number of additional inequalities for HMO total ~z- 
electron energy of acyclic conjugated systems are proved. 
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1. Introduction 

From the pioneering work of Coulson [ 1 ] there exists a continuous interest towards 
the general mathematical properties of total re-electron energy (E) as calculated 
within the framework of the Hiickel molecular orbital (HMO) model [2-19]. These 
efforts enabled one to get an insight into the dependence o f  E on the details of 
molecular structure, although a complete solution of  the problem is not to be 
expected [13]. 

It has been shown that Eis a bounded quantity and various upper and lower bounds 
were derived [8, 12]. A related problem is which conjugated molecules (within a 
given class of conjugated systems) have extremal (maximal and minimal) values of 
total K-electron energy. Evidently, the answer to this question would provide the 
best possible bounds for E (within the class considered). 

In the present paper we offer a solution of the above problem for acyclic conjugated 
systems. The proof  technique which we shall develop yields numerous further 
inequalities between the E values of different acyclic structures. In this respect, the 
present work contains proofs of several relations which have been found empirically 
in Ref. [17]. 
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A starting point in our considerations is the following integral expression for E (in fl 
units) of alternant conjugated hydrocarbons [18, 19]. 

1 + ~ d x  
E = ~  ~ x~-log (1 + b l x 2 + b z x 4 +  �9 �9 �9 + b k  x 2 k )  (1) 

where 

P( G, x) = x" - b 1 X n  - 2 _1_ b 2 x n  - 4 . . . .  + ( - -  l ) g b k x  n - 2 k  (2) 

is the characteristic polynomial of the corresponding molecular graph G. n is the 
number of vertices in G and 

(n/2 if n is even 
k 

4"((n_ 1)/2 if n is odd. (3) 

If the characteristic polynomial is written as in Eq. (2), then bj =- bj(G)>~ 0 for all 
j = 1, 2 . . . . .  k. For further details of graph theory and its applications in the theory 
of conjugated compounds see Ref. [20]. 

Let G and H be the molecular graphs of two alternant molecules with the same 
number n of conjugated atoms. Suppose the coefficients bj of these two graphs fulfil 
the inequalities 

bj(G) >~ bj(H) for all j =  1, 2 , . . . ,  k. (4) 

Then from Eq. (1) it follows immediately that E ( G ) ~  E(H). Moreover, if G and H 
are not isospectral (that is, if the characteristic polynomials of G and H are not 
equal), the relations (4) imply E(G) > E(H). Of course, if G and H are isospectral, 
then E(G) = E(H). 

We will write the set of inequalities (4) in an abbreviated form as G > H (or H <  G), 
Hence, if G and H are not isospectral, 

G > H  ~ E(G)> E(H). (5) 

In the present work several relations ~- will be demonstrated for molecular graphs 
of acyclic systems. These graphs are called trees. In the next section is presented a 
survey of necessary graph theoretical results valid for trees. 

A graph which represents a conjugated system cannot contain vertices, the degrees 
of which exceed three [20]. Although in the subsequent discussion this restriction 
will not be taken into account, our results apply in the great majority of cases to 
molecular graphs. In particular, note that the tree n(v)m is a molecular graph for all 
values of n, m and v (see later). 

2. Trees and Their Spectral Properties 

We shall use the following notation and terminology. A connected acyclic graph is 
called a tree. A tree with n vertices contains n - 1 edges. Let Y, be the set of all trees 
with (exactly) n vertices. 
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A tree possesses necessarily vertices of degree one. Such vertices are, for obvious 
reasons, called terminal. The tree with minimal number ( =  2) of terminal vertices is 
the path (P,), while that with maximal number (=  n -  1) of terminal vertices is the 
star (S,). Let the vertices 1, 2 , . . . ,  n of the path P,  be labelled so that vertices 1 and n 
are terminal and the vertices j and j +  1 are adjacent (j'= 1, 2 , . . . ,  n -  1). 

Let the trees A,, B,, and C, be defined as follows. A, is obtained by joining a vertex to 
a terminal vertex of S,_ 1- Bn is obtained by joining a vertex to the vertex of  degree 
two of A,_ 1. C, is obtained by joining a vertex of P2 to a terminal vertex of S,_ 2. 
For  example, we present P9 (labelled), $9, A9, B9 and C9. 

1 2 3 4 5 6 7 8 9 Q. ? /D 

~ 
P9 S9 

0 0 0 

A9 B9 C 9 

Further, let G be an arbitrary graph and v its arbitrary vertex. Then we denote by 
G(v)m the graph obtained by joining the terminal vertex of P,, to the vertex v of G. 

V 0 0 0 O 

G G(v)l G(v)4 

In particular, P,(v)m is obtained by joining the terminal vertex of  P,, to the vth vertex 
of P,. For  convenience we shall denote P,(v)m in an abbreviated manner as n(v)m. 
As an example we present P7(3)2--7(3)2 and Ps(2)l---8(2)1. 

Pv(3)2=~7(3)2 Ps(2)1__=8(2)1 

Let A be the adjacency matrix of the graph G. Then P(G, x) = det ( x l -  A) is the 
characteristic polynomial of G. A tree is bipartite since it is acyclic. Therefore [20], if 
T ~ Y,, P(T, x) can be written in the form (2). Moreover, the coefficients bj(T) have 
the following property [21-23] 

bj(T) =p(T,h (6) 
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wherep(G, j)  is the number of  ways in whichj  non-incident edges can be selected in a 
graph G. Consequently, for all trees, b l ( T ) = n u m b e r  of  edges in T = n - 1 .  

Let Tbe  a representation of an acyclic conjugated system. The spectrum of T are the 
roots xl >~x2 ~> . . .  ~>x, of  P(T, x). Then the total 7r-electron energy (in fl units) of  
the corresponding system is [-6, 9, 20] 

k n 

E=E(T)=2 y~ xy= Y, Lxyl. 
j = l  j = l  

In the following we will call the sum of the absolute values of  the elements of  the 
graph spectrum "the energy of the graph".  We use this term regardless of  whether a 
graph represents a conjugated system or not. 

The characteristic polynomial of  a tree T fulfils the equation [23, 24] 

P( T, x ) = P ( T - e ,  x ) -  P( T -  ( e), x) 

where T -  e is the graph obtained by deletion of an (arbitrary) edge e from T, while 
T -  (e) is obtained by deletion from T the edge e and its two incident vertices. This 
is a proper consequence of a relation [22] 

bj( T) = b:( T -  e) + by_ I(T-- (e)). (7) 

In order to prove (7) remember that any selection o f j  non-incident edges from T 
either contains the edge e or not. Now there are exactly p ( T  - e, j) selections without 
the edge e and p(T--(e), j -  1) such selections with the edge e. Then Eq. (7) follows 
from Eq. (6). 

Let v be a terminal vertex of T, adjacent to another vertex w. Let e be the edge 
connecting these two vertices. Then a special case of  Eq. (7) is 

bj( T) = bj( T -  v) + by_ I( T -  v -  w) (8) 

with T -  v and T -  v - w being the graphs obtained by deletion of the vertex v and the 
vertices v and w, respectively, f rom T. In particular, if T =  To(v)m, 

bi( T) = bj( To(v)m - 1) + b j_ l( To(v)rn - 2). 

For several proofs in the following discussion it is important  to remember that if 
T~ J-,,, then T - v e J , _ l  and T - - v - - w @ J ' ~ n _ 2  �9 

3. The Trees with Maximal and Minimal Energies 

3.1. Proposition 1. S , ~ T f o r  all T~  ~-, 

Proof. The characteristic polynomial of the star is P(S,, x) = x n - (n - 1)x ~ - 2. But all 
other trees f rom Y-n have also bl = n - l ,  but b2>0.  Hence, inequalities (4) are 
fulfilled. 



Acyclic Systems with Extremal Hiickel n-Electron Energy 83 

3.2. Proposition 2. Pn>- T for all T s Jn  

Proof. It  is easy to check the above statement for small values o fn  (n = 2, 3, 4). Now 
suppose that proposition 2 is true for n = 2, 3 , . . . ,  m - 1. Let To be the tree such that 
T o > T for all T e Ym. We prove that To = Pro. 

Let v be a terminal vertex of T o adjacent to the vertex w. Then Eq. (8) holds. Now, 
bj(To) is maximal if both bj(T o - v) and b~_ a(T 0 - v - w) are maximal. According to 
our assumption, this implies T o - v = Pro- ~ and To - v - w = P,, _ 2. This, however, is 
possible only if T o = Pro. 

3.3. Proposition 3. T ~ J-n 

E(Sn) < E( T) < E(Pn) (9) 

This is a proper consequence of the above two propositions, Eq. (5) and the fact that 
there are no trees isospectral with Sn or pn. 

Thus we have found that among all trees, the non-branched path has maximal, and 
the maximally branched star has minimal energy. The fact that the linear polyene 
should be the most stable isomer among all acyclic conjugated systems has been first 
pointed out in Ref. [9]. Proposition 3 is a new indication that branching is a 
destabilizing factor in conjugated molecules [17]. 

Lovfisz and Pelik/m [23] proved the intriguing result that for all trees T with n 
vertices, 

xl(Sn) >~ xI (T)  >1 x~(P,) (10) 

The analogy between Eqs. (9) and (10) is evident. However, the readers attention is 
drawn to the fact that a naive extension of inequalities (10) would lead to a 
conclusion which is just the contrary of proposition 3, namely E(Sn) >1 E(T) >>- E(P n). 
Therefore, proposition 3 seems to be a non-trivial result with reference to 
inequalities (10). 

4. Further Inequalities 

It  is not difficult to find additional trees with minimal energy. 

4.1. Proposition 4 

If  T ~  Yn, but T ~  Sn, An, Bn, Cn, then 

Sn '<An<Bn<Cn<T 

and therefore 

E(S,)  < E(An) < E(B,) < E(C,) < E(T). 

Proof  is analogous to that of  proposition 1 and is based on the knowledge of the 
characteristic polynomials of An, B n and C,:  P(An, x ) = x n - ( n - 1 ) x "  2+ 
( n - 3 ) x n - 4 ;  P(Bn, x ) = x n - ( n  - 1 )xn-Z+(2n-8)xn-4;  P(Cn, x ) = x n - ( n  - 1)x n-z 
+ (2n - 7)x n- 4 
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4.2. Proposition 5 

Let t be an integer. Then 

a) if n = 4t, 
n - l ( 2 ) l < n - l ( 4 ) 1 ~ -  �9 " ~ n -  l ( k ) l ~ n -  l ( k -  1)1~ 
< n -  1 ( k -  3 ) 1 < .  �9 �9 < n -  1 ( 3 ) 1 < n -  1(1)1 - P,  (1 la) 

b) if n = 4 t + 2 ,  
n -  1(2)1 < n -  1(4)1 < -  �9 ' < n -  l ( k -  1 ) l < n -  l(k)l  < (1 lb) 
< n - l ( k - 2 ) l < . . . < n - l ( 3 ) l < n  1(1)1 = P ,  

c) i f n = 4 t + l ,  
n -  1 ( 2 ) 1 < n -  1(4)1<.  �9 - < n -  l(k)l < n -  l(k + 1)I < (1 lc) 
< n - l ( k - 1 ) l < "  �9 . < n - l ( 3 ) l < n - l ( 1 ) l  = P .  

d) if n = 4 t + 3 ,  
n -  1(2)1 <~n-  1(4)1 < .  �9 " < n -  l ( k +  1)1 < n -  l(k)l  < (1 ld) 
< n - l ( k - 2 ) l <  - �9 . < n -  l ( 3 ) l < n -  I ( 1 ) I - P , .  

Here k is defined by Eq. (3). 

In accordance with Eq. (5), relations (11) imply a set of inequalities for E. These have 
been first noticed in Ref. [17] (see Fig. 1 in this reference), where also a perturbation- 
theoretical argument is given for their justification. In order to prove proposition 5, 
we shall need the following proposition 6. 

4.3. Proposition 6 

Let n (+)m be the graph, the (only) components of which are P,  and Pro. Then for 
i = 1 , 2 , . . . , n ,  

l ( + ) n -  1 < i ( + ) n -  i ~ 2 ( + ) n -  2 ~ 0 ( + ) n - -  P, (12) 

Proof. The inequalities (12) can be easily verified for n -- 6, 7. Suppose they hold for 
all n=6 ,  7 , . . .  i m - 1 .  We prove that Eq. (12) holds then for n=m too. 

Because of  Eq. (8), we have for arbitrary i, 

b~(Pm)=bj(i(+)m-i)+bj_l(i- l ( + ) m - i -  1). 

Since obviously bj(Pm) is independent of  i, bj(i(+)m-i) is minimal if bj_a(i-1 
( + ) m - i - 1 )  is maximal. According to proposition 2, this occurs when i - 1  =0.  
Hence, 1 (+ )m - 1 < i ( + ) m  - i. Further, for i # 0 and i v~ n, b~ ( i ( + ) m ,  i) is maximal 
if b~_~( i - l (+)m- i -1 )  is minimal. According to our assumption, this occurs 
when i -  1 = 1. Hence, 2(+)m-2~-i(+)m-i .  

4.4. Proof of Proposition 5 

Application of Eq. (8) gives 

bj(n- 1(i)1) =bj(P,_ ~) + b~_ 1(i- l ( + ) n -  i -  I) 

Since b i (P, _ 1 ) is independent of i, bj (n - 1 (i) 1 ) will be minimal if b j_ 1 (i - 1 ( + )n - i 
- 1) is minimal, that is if i -  1 = 1. Therefore, n -  1(2)1 < n -  1(i)1. 
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Similarly, bj (n - 1 (i) 1) is maximal if b j_ 1 (i - 1 ( + )n - i -  1) is maximal, that is if i - 1 
=2.  Therefore, if i r  1, n -1(3)1  >-n-1( i )1 .  

All other statements of proposition 5 can be proved analogously. 

The relation n -  1(3)1 ~ n -  1(/)1 implies, of course, E(n-  1(3)1) > E ( n -  1(i)1). 
Translated into the language of organic chemistry, this means that among isomers 
with the same number of branches, the one which contains a vinyl group (or the 
maximal number of such groups) is the most stable. Moreover, the presence of vinyl 
groups turns out to be the most favourable, while the presence of methylene groups 
the most unfavourable case in acyclic polyenes. Examples from the polyene 
chemistry and especially from naturally occurring conjugated systems come rapidly 
to mind. 

Later we shall see that the search of the most stable branched acyclic polyene will 
lead also to vinyl compounds. 

The following simple argument enables one to find numerous new inequalities 
between the energies of trees. 

4.5. Proposition 7 

Let G and H be trees with n vertices and 9 and h their arbitrary vertices. If G >- H and 
G(9)l ~ H(h ) l ,  then also for arbitrary i it holds 

G(9)i>-H(h)i 

Proof can be performed by total induction, using the facts that 

bj(G(9)i) = bj(G(g)i- 1) + b j_ ~(G(g)i- 2) 
bj(H(h)i) = b~(H(h)i- 1) + b j_ l(H(h)i- 2) 

Then from bj(G(9)i- 1) ~> bj(H(h)i- 1) and b j_ ~(G(9)i- 2) >~ b j_ i (H(h)i- 2) it fol- 
lows immediately that bj(G(9)i)>~ b~(H(h)i). 

As a consequence of this proposition, we can set n - l(v)i instead ofn  - l(v)l in Eqs. 
(11). 

Now we are able to determine the tree with second maximal energy. First we prove 
the simple proposition 8. 

4.6. Proposition 8. n - l ( i ) l < n - 2 ( 3 ) 2 f o r  all i#  1, n 

Proof. Because of proposition 5, it is sufficient to show that n - 1(3)1 < n  - 2(3)2. But 
this follows immediately from 

bj(n-2(3)2)=bj(n-2(3)l)+bj 1(P,-2) 

and 

bj(n-  1(3)1) = bj(n-2(3)l) + b j_ l ( n -  3(3)1) 

and the fact that bj_ a(Pn_ 2)~ bj_ l(n- 3(3)1) by proposition 2. 
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4.7. Proposition 9 

I f  T ~ J-n, but T-r P, ,  

n - Z ( 3 ) 2 ~ - T  (13) 

Proof. For  small values of  n(n = 6, 7) relation (13) can be checked by considering 
the characteristic polynomials of  all trees. Suppose that Eq. (13) holds for all 
n = 6, 7 . . . .  , m - 1  and let T o be a tree which fulfils the relation T o ~  T for all 
T ~ Y ~ ,  T # P  m. We prove that T o = m - 2 ( 3 ) 2 .  

Let v be a terminal vertex of To adjacent to the vertex w. Then bj(To)= by(To-  v) 
+ b j _ l ( T o - v - w ) .  Since 

bj(n - 2(3)2) = bj(n - 3(3)2) + b j_ ~(n - 4(3)2) 

the inequalities bj(To) >~ bj(n - 2(3)2) will be fulfilled if either T o = n - 2(3)2 or To - v 
=Pn-1  or T o - v - w = P , _  2. I f  T o - v = P n _ a ,  it must be T o = n -  1(i)1. According 
to proposition 8, this implies T o < n - 2 ( 3 ) 2  , which is impossible. I f  T o - v - w  
= P n - 2 ,  it must be T o = n - 2 ( i ) 2 .  From the consequence of proposition 7, 
n - 2(3)2>-n - 2(i)2 and therefore T o = n - 2(3)2. 

In the language of organic chemistry, this proposition means that the most stable 
non-linear acyclic polyene is the 1,1-divinyl isomer: 

E( / / -  . /  / ...) > E ( / ~ - . / ~ - . . )  ~ E(anyotheracyclicpolyene) 

5. Inequalities for the Topological Index of Hosoya 

Hosoya introduced [25] the topological index Z =  Z(G), which is by definition 

Z(G) = 1 +p(G, 1) +p(G, 2) + �9 �9 �9 +p(G, k). 

Later it has been demonstrated [26] that Z(G) is a rather sensitive measure for 
certain thermodynamic properties of  saturated hydrocarbons. The relations 
between Z(G) and the characteristic polynomial of  the molecular graph G have been 
also established [27]. Because of Eq. (6), for a tree T 

Z(T)  = 1 +ba(T)+b2(T)+  . . . +bk(T). 

Hence, T1 > T2 implies also Z(T1) > Z(T2), unless T 1 and T 2 are isospectral (when, 
of  course, it is Z ( T  1 ) = Z(T2)). Every relation between trees which has been derived 
in the present paper results in a corresponding inequality for the topological index. 
We list only one set of  such inequalities. 

I f  T ~  Y, ,  but T ~ S , ,  An, n-2 (3 )2 ,  Pn, then 

Z(  Sn) < Z(An) < Z(  T) < Z(n - 2(3)2) < Z(Pn). 
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